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ABSTRACT 
In this paper, we present robustness analysis of Control Systems by means of the Polynomial Chaos Method 

(PCM). The PCM was firstly conceived by Norbert Wiener to solve some kind of Gaussian stochastic system. 

The method was improved and generalized to be applied to different kinds of random measures (the Winer-Askey 

scheme). It consists of expanding candidate solutions in Galerkin polynomials of random variables, which 

transforms the system in a bigger set off deterministic equations that can be solved by traditional numerical 

methods. We also present two examples of applications: 1) robustness analysis of a multivariable linear time 

invariant system under a robust controller and 2) the robustness analysis of a nonlinear system with a feedback 

linearization controller. 

INTRODUCTION  
The problem of numerical solution of a stochastic differential systems is presented in more detail in [1], as 

presented in the following. The stochastic differential system to be simulated is: 

{
�̇�(𝑡) = 𝐹(𝑥(𝑡),𝑤(𝑡), 𝜃, 𝑐, 𝑡)

𝑣 = 𝐻(𝑥(𝑇),𝑤(𝑇), 𝜃, 𝑐, 𝑡)
         (1) 

where 

1. 𝜃 is a vector of random parameters; 

2. 𝑤(𝑡) is a vector of input stochastic processes; 

3. 𝑐 is a vector of initial conditions (that are also random variables); 

We are interested in random variables, that we could call 𝑣, in the final instant of time 𝑇, and we wish to determine 

the following parameters for this variable: 

1. Expected Value and Variance / Standard deviation; 

2. Probability Density Function (PDF). 

The vector of parameters 𝜃, initial conditions 𝑐 and stochastic input stochastic processes 𝑤(𝑡) are all defined in 

the probability space (Ω;ℱ;  𝑃). Despite the stochastic processes 𝑤𝑖 be a uncountable set of random variables, in 

order to perform numerical integration, they must be approximately expressed as a finite set of random variables 

i.i.d. (independent and identically distributed (for example, by means of a Karhunen-Loeve expansion). 

So, for all the purposes, the total randomness of the system are represented by a vector of n random variables: 

Ξ = [𝜉1  𝜉2   ⋯  𝜉𝑛]  
 

Definition 1.1 (Functional Solution). The stochastic process 𝑥, that is solution of the problem presented in Eq. 

(1) is a functional of the random variables and input stochastic processes: 

 

𝑥𝑡  =  𝑥(𝑡; 𝜃;𝑤𝑡)  

 

In many applications, 𝑤𝑡 is a vector of Wiener processes, as inputs are affected by white noise. 

The process of efficiently combining non-intrusive polynomial chaos expansions based methods uncertainty 

quantification methods and adjoint techniques to obtain robust optimal controllers for dynamical systems is 

present in [2, 3]. 

 

In [4] was exploited the polynomial chaos approximation to represent the residual energy random variable, was 

presented a three mass-spring system used to illustrate how the proposed approach can be easily extended to 

systems 

With multiple uncorrelated uncertainties. Minimizing the expected value of the mean, variance and absolute value 

of the skew is shown to progressively approach the solution of the minimax design. A three-dimensional puff-

based model has been tested in [5], for the purpose of accurately estimating the uncertainty distribution of the 

solution, caused by the uncertainty in the diffusion parameters of the model. The approximate solution to the 
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stochastic system was obtained as a linear combination of the selected orthogonal basis functionals, whose 

coefficients are functions of time. The solution is shown to compare well with the true Monte Carlo solution. 

 

In [6] is developed a novel framework for stability analysis of linear and polynomial stochastic systems. The 

developed 

Theory is also applied for robustness verification of a linear flight control design for a stochastic F-16 aircraft 

model. 

In this paper, will be presented robustness analysis of Control Systems by means of the Polynomial Chaos Method 

(PCM). With objective the goal of this work are the applications of control systems by means of the PCM applied 

in two examples: 1) robustness analysis of a multivariable linear time invariant system under a robust controller 

and 2) the robustness analysis of a nonlinear system with a feedback linearization controller. 

 

POLYNOMIAL CHAOS METHOD 
Series expansions of stochastic processes is a well-known fact that helps in the numerical solution of stochastic 

differential equations. In fact, a very general stochastic process, as a Wiener process, from which it is possible to 

define rigorously white noise, can be represented as a measure space 𝒲(ℝ) with a 𝜎-algebra of cylinders (the 

cylinders can be constructed from the neighborhoods of each possible trajectory of the Wiener process) [7]. In 

fact, given the Wiener probability space 𝒲(ℝ), the Wiener measure 𝜛 is the only probability measure in 𝒲(ℝ) 

such that when restricted to a  finite subset of sections of the cylinders, for example 𝐴1;  ⋯ ; 𝐴𝑁, results in: 

𝑃(𝐴1,⋯ , 𝐴𝑁) = ∫
𝐴_1

⋯∫
𝐴𝑁

𝑓𝑤(𝑡1, 𝑤1)𝑓𝑤(𝑡2 − 𝑡1, 𝑤1, 𝑤2)𝑓𝑤(𝑡3 − 𝑡2, 𝑤2, 𝑤3)⋯𝑓𝑤(𝑡𝑛 −

𝑡𝑛−1, 𝑤𝑛−1, 𝑤𝑛)𝑑𝑤1𝑑𝑤2 ⋯𝑑𝑤𝑛          (2) 

where 𝑓𝑤 is the Gaussian probability distribution. The set of random variables associated to this space are the 

elements of the Banach space 𝐿𝑝(𝒲(ℝ)), which are functionals in this space and are represented by 𝐹[𝑤], where 

𝑤 ∈ 𝒲(ℝ). For any functional in this space, it is valid that: 

∫
𝒲(ℝ)

|𝐹[𝑥]|𝑝𝑑𝓌 < ∞  

Given the Hilbert space of squared integrable time functions 𝐿2(ℝ), and the set of orthogonal functions {𝛼𝑛(𝑡)} 
that generates 𝐿2(ℝ), the Karhunen-Loeve (𝐾𝐿) series for the Wiener process is an Fourier-like series expansion 

in those functions with coefficients given by the generalized Stieltjes integrals: 

𝑎𝑛 = ∫ 𝛼𝑛(𝑡)𝑑𝑤(𝑡)
𝑏

𝑎
  

where 𝑤 ∈ 𝒲(ℝ). Those integrals are of course random variables. Evidently, for more regular stochastic 

processes, 

similar expansions exists. 

Another kind of series expansion of a stochastic process, that is equally useful in the solution of stochastic 

differential 

equations, is the expansion in functions of random variables. In particular, the Polynomial Chaos Expansion has 

several numerical advantages that justify its increasing popularity. It was Norbert Wiener, in [8], which shown 

that an Gaussian stochastic process could be expanded in a finite variance (that is a process in the space 

𝐿2(Ω; 𝐹;  𝑃)) Fourier-Hermite series in Gaussian random variables (that is, the elements of the basis are Hermite 

polynomials in the random variables). In [9], Cameron and Martin have shown that the series converge in the 𝐿2 

sense [10]. 

Those random polynomials are also known as Wick polynomials. In fact, given a probability space (Ω; 𝐹;  𝑃) and 

a set of random variables Δ1, Δ2,⋯ , Δ𝑛, the Wick product for the set, represented by: Δ1
𝑘1 , Δ2

𝑘2 , ⋯ , Δ𝑛
𝑘𝑛  : is given 

by: 

1. 𝐸[: Δ1
𝑘1Δ2

𝑘2 ⋯Δ𝑛
𝑘𝑛: ] = 0 

2. 
𝜕

𝜕Δ𝑖
 ∶  Δ1

𝑘1Δ2
𝑘2 ⋯Δ𝑖

𝑘𝑖 ⋯Δ𝑛
𝑘𝑛 

∶= 𝑘𝑖 ∶  Δ1
𝑘1Δ2

𝑘2 ⋯Δ𝑖

𝑘𝑖−1 ⋯Δ𝑛
𝑘𝑛 

:  

For example, we have : Δ ≔ Δ − 𝐸[Δ]. One defines the Wick exponential from the Wick products as: 

: 𝑒𝛼Δ ≔ ∑
𝛼𝑛

𝑛!

∞
𝑖=0 : Δ𝑖:   

The Wick powers : Δ𝑛: have the same formula as the Hermite polynomials. In the particular case of Δ be 𝑊𝑡, that 

is, the Wiener process in the instant of time 𝑡, the above formula is equivalent to the exponential 𝑒𝜆𝑡 of Ito Calculus 

[7]. In the case of several random variables Δ1, Δ2,⋯ , Δ𝑛, we have the Wick polynomials depending on those 

variables. In the particular case of Δ being a Gaussian random variable of type 𝑁(0, 1), we have: 

: 𝑒𝛼Δ ≔ 𝑒𝛼Δ−
1

2
𝛼2

= Ψ(𝛼, Δ)          (3) 
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where Ψ(𝑥, 𝑧) is a generating functions of Hermite polynomials. The Hermite polynomials (not normalized) are 

obtained by the formula: 𝑁𝑛(𝑥) = (−1)𝑛𝑒𝑥2 𝑑𝑛

𝑑𝑥𝑛 (𝑒−𝑥2
) , with 𝑛 ∈ ℤ+ that satisfy the following relation (see, for 

example [11]): 

∫ 𝑒−𝑥2
𝑁𝑚(𝑚)𝑁𝑛(𝑥)𝑑𝑥 = {

0                 𝑚 ≠ 𝑛

2𝑛𝑛!√𝜋     𝑚 = 𝑛
∞

−∞
        (4) 

If the inner product in the Hilbert space of functions 𝐿2(ℝ) is de_ned by the integral in Eq. (4), where the weight 

function is 𝑤(𝑥) = 𝑒−𝑥2
, the the functions 𝑁𝑛(𝑥) form an orthogonal basis in this space. Some examples of 

Hermite polynomials are 𝑁0(𝑥) = 1,𝑁1(𝑥) = 𝑥, 𝑁2(𝑥) = 𝑥2 − 1, 𝑁3(𝑥) = 𝑥3 − 3𝑥. An orthonormal basis is 

created if the Hermite polynomials are normalized in the following way: 

𝐻𝑛(𝑥) =
𝑁𝑛(𝑥)

√𝑛!
  

The normalized Hermite polynomials are related to the generating function presented in Eq. (3) by the following 

formula 

Ψ(𝑥, 𝑧) = 𝑒−
𝑥2

2
+𝑥𝑧 = ∑

𝑁𝑛(𝑥)

𝑛!
𝑧𝑛∞

𝑛=0   

There are also recursive formulas that can be used to calculated the set of normalized Hermite polynomials. The 

Hermite polynomials are related by the recursive formula: 

√𝑛 + 1𝐻𝑛+1(𝑥) − 𝑥𝐻𝑛(𝑥) + √𝑛𝐻𝑛−1(𝑥) = 0  

So, given a Gaussian random variable Δ, any function of Δ can be written as a Fourier-Hermite series: 

𝑓(Δ) = ∑ 𝑓𝑛𝐻𝑛(Δ)∞
𝑛=0   

where the coefficients can be calculated by formula: 

𝑓𝑛 = ∫ 𝑓(𝑥)𝐻𝑛(𝑥)𝜌(𝑥)𝑑𝑥
∞

−∞
          (5) 

It is important to emphasize here that the calculations in Eq. (5) are deterministic, that is, it is a normal integral 

calculation, where 

𝜌(𝑥) =
1

√2𝜋
𝑒−

𝑥2

2    

Given the random variable function 𝑓(𝑥), the following formula relates its variance with the Fourier-Hermite 

coefficients: 

𝐸[𝑓2(𝑥)] = ∑ |𝑓𝑛|2∞
𝑛=0            (6) 

It is easy to show that 𝐸(𝑁0(Δ)) = 1 and 𝐸(𝑁𝑛(Δ)). 

 

Solution of Stochastic Differential Systems using Polynomial Chaos Method 

The Polynomial Chaos method can be used to solve a stochastic differential system (SDS), that could be ordinary 

or partial. Using the result presented in [9], the solution of the SDS is of the form: 

𝑢(𝑥, 𝑡; 𝜉1, 𝜉2,⋯ , 𝜉𝑛) = Γ0(𝑥, 𝑡) + ∑ Γ𝑖(𝑥, 𝑡, 𝜉𝑖) + ∑ ∑ Γ𝑖𝑗(𝑥, 𝑡, 𝜉𝑖 , 𝜉𝑗) + ⋯𝑛
𝑖<𝑗

𝑛−1
𝑖=1

𝑛
𝑖=1     (7) 

where 𝜉1, 𝜉2,⋯ , 𝜉𝑛 is a set of random variables such as all the random parameters and inputs can be expressed 

in function of them (by means, for example, of Karhunen-Loeve series). In particular: 

1. Γ0(𝑥, 𝑡)  is the expected value of the stochastic process; 

2. Γ𝑖(𝑥, 𝑡) = 𝐸[𝑢𝑥 ,𝑡 |𝜉𝑖] − Γ0(𝑥, 𝑡) 

For the particular case of an ordinary stochastic system with one random parameter 𝜃, the general form [1] is: 

�̇�𝑡 = 𝐹(𝑢𝑡, 𝑤𝑡 , 𝜃, 𝑡)           (8) 

where 𝑡 is the time variables, 𝜃(𝜔) is the random parameters in the probability space (Ω;  𝐹;  𝑃), 𝑤𝑡(𝜔) is a vector 

of stochastic process that represents inputs to the system (in function of 𝜃), and 𝑐(𝜔) is a vector of initial 

conditions (in function of 𝜃). The general solution is of the form: 

𝑢(𝑡;𝜔) = ∑ 𝑢𝑖(𝑡)𝜙𝑖(𝜔)∞
𝑖=0           (9) 

where {𝜙𝑖(𝜔)} is a basis for the Hilbert space 𝐿2(Ω;ℱ;  𝑃), that are random variables in function of 𝜃 (so are 

dependent variables). The functions/coefficients {𝑢𝑖(𝑡)} are then deterministic functions. In particular, the 

solution of the system in Eq. (8) must have such a decomposition, and 𝜙𝑖(𝜔) must be functionals in 𝐿2(Ω;ℱ;  𝑃). 

If the solution is numerical, as in the vast majorities of the cases, some statistical parameters are commonly 

calculated, as for example means, standard deviations and estimates for PDF (probability density functions). In 

particular, 

𝑉𝑎𝑟[𝑢(𝑡, 𝜔)] = 𝐸[𝑢2] − (𝐸[𝑢])2 = ∑ 𝑢𝑖
2∞

𝑖=0 𝐸[𝜙𝑖
2(Δ)] − 𝑢0

2  

 

RESULTS AND DISCUSSION 

Application to a Linear Control System 
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In this section, we present a robustness analysis of a linear time invariant system that represents a multivariable 

plant. 

The plant/process controlled in this work is the kit LTR 701 from the manufactures Amira/Elwe, that is in the 

Control Laboratory at the Sorocaba Campus - São Paulo State University (UNESP).  

 

A picture of the plant is in Fig. 1. This kit consists of an air conducting pipe, in which the air is forced by a 

proportionally controlled fan (which dynamic is deliberately ignored). The fan's velocity is varied between 0 to 

100 per cent, which corresponds to 0 to 10 V in the analog input signal. A heating resistance is right after the fan, 

which also can be varied from 0 to 100 per cent. There is a manual buttery entrance valve, right before the fan, 

that can be used to generate disturbances in the system. There is a thermo couple sensor to measure the air 

temperature, which can be put in four different places along the tube. At the other end of the tube, an air mass flux 

sensor or a pressure sensor can be connected. Those signals are internally converted in analog voltage signals, 

which are also accessible in the front panel (or in a connector to the computer system to be used in the control 

function). The acquisition board is the MF-614 from Humusoft, which has seven analog inputs and two analog 

outputs (the digital inputs and outputs will not be used in this work). The analog inputs can be configured to accept 

signal from -10 to 10 V, which in compatible to the voltage levels of the kit. The software used for control / system 

identification used is a real time software (real time Windows target, that is a toolbox of MATLAB/Simulink). 

This tool generates a simulation / control executable file that runs with higher priority than the operational system 

(kernel) and takes control of the hardware (and of the interrupt request management), guaranteeing the hard real 

time demands. The thermo couple sensors are of the type NiCr-Ni, with time lag constants of 0.3 or 3.0 seconds, 

depending on which sensor is used (this constants will be ignored). The more distant the sensor is put away from 

the heating resistance, the greater is the dead time in the corresponding transfer function. The linear system to be 

controlled is shown in Fig. 1 below. 

 
Fig. 1. Multivariable System to be Analyzed 

𝐴 =

[
 
 
 
 
 
 
 
 
−47.48 −17.57 −2.28 0 0 0 0 0 0
32.00 0 0 0 0 0 0 0 0

0 2 0 0 0 0 0 0 0
0 0 0 −5.92 −2.01 −0.76 0 0 0
0 0 0 4 0 0 0 0 0
0 0 0 0 0.5 0 0 0 0
0 0 0 0 0 0 −25.80 −11.63 −5.29
0 0 0 0 0 0 16.00 0 0
0 0 0 0 0 0 0 4 0 ]

 
 
 
 
 
 
 
 

;  𝐵 =

[
 
 
 
 
 
 
 
 
0.50 0.00
0.00 0.00
0.00 0.00
0.00 0.25
0.00 0.00
0.00 0.00
0.00 8.00
0.00 0.00
0.00 0.00]

 
 
 
 
 
 
 
 

; 𝐶 = [
0.50 −0.06 0.62 0.00 −0.043 0.34 0.00 0.00 0.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 −4.01 8.36

] ; 𝐷 = [
0 0
0 0

]  (10) 

 

For the case of the control system analyzed in this work, some parameters of the matrix 𝐴 presented in Eq. (10) 

were varied, that is, were considered random variables with uniform distribution with 10% of variation around 

the nominal value. For this kind of PDF, the corresponding polynomials are Legendre polynomials. The number 
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of polynomials in the truncated base were ten, so the corresponding deterministic system of differential equations 

has ninety equations. In Fig. 2, it is shown the map of eigenvalues for the nominal system (in green - the 

transmission zeros are also presented) and the stochastic system (in magenta - without transmission zeros). All 

the eigenvalues has some variation with this parameter, but the two leftmost has a greater variation. 

 
Fig. 2. 10% variation in A(1, 1) 

In Fig. 3. In Fig. 4, on the other hand, are shown the poles for the closed loop system with 𝜇 = 0.05 in the 

LQG/LTR design. It is clear that the poles' dispersion are considerably lower near the imaginary axis (there are 

poles in the left that are not shown - the zeros should be ignored in this figure). Of course, the controller changed 

the positions of some poles, besides the reduction of dispersion. The same occur with variations in 𝐴(1,1) in 

closed-loop. 

 
Fig. 3. 10% variation in A(7, 7) 



 [Colon., 2(9): September, 2015]                                                                                ISSN 2349-4506 
  Impact Factor: 2.265 

Global Journal of Engineering Science and Research Management 

 

http: //  www.gjesrm.com        © Global Journal of Engineering Science and Research Management 

 [165] 

 
Fig. 4. 10% variation in A(7, 7) and closed-loop 

 

Application to a Nonlinear Control System: Feedback Linearization 

The Duffing oscillator is a very common kind of nonlinear system that appears in several applications, that is, 

many nonlinear systems can be modeled by this equations. It could represent, for example, a mass-spring-damper 

system where the spring has a cubic dependence on the position. The differential equation that represents this 

system is 

�̈� + 2𝜉�̇� + 𝛼𝑦 + 𝛾𝑦3 = 𝑢(𝑡)          (11) 

where 𝑦 is the position, 𝜉 is the damping coefficient, 𝛼 is the linear spring constant and  is the cubic spring 

constant. The input signal 𝑢(𝑡) could also be a feedback signal. 

In order to apply the feedback linearization procedure, one has to put the system in the form 

�̇� = 𝑓(𝑥) + 𝑔(𝑥)𝑢(𝑡)

𝑦 = ℎ(𝑥)                       
           (12) 

which is a second order system with vector  fields: 

𝑓(𝑥) = [
𝑥2

−𝛼𝑥1 −2𝜉𝑥2 −𝛾𝑥1^3̇
]         (13) 

𝑔(𝑥) = [
0
1
]           (14) 

Let us suppose that we could choose a linear combination of the states as output. Then: 

ℎ(𝑥) = [𝑎 𝑏]            (15) 

After applying time derivative in the output 𝑧 = ℎ(𝑥), the input appears, and the relative degree is one. Then we 

have: 

�̇� = (𝑎 + 2𝑏𝜉)𝑥2 − 𝑏𝛼𝑥1 − 𝑏𝛾𝑥1
3 + 𝑏𝑢  

In order to proceed the linearization, one must find a diffeomorphism Φ that transforms the coordinates 𝑥1, 𝑥2 to 

new coordinates 𝜇,𝜓 where 𝜇 = 𝑦, and 𝜓 is determined by the following condition: 

∇𝜓 ⋅ 𝑔 = 0  

which guarantees that ? that the system in the new coordinates is separated in observable and non-observable parts 

?. Such condition could be achieved if 𝜓 = 𝑐𝑥1. Then, the inverse diffeomorphism is simply: 

Φ−1(𝜇,𝜓) = (
1

𝑐
𝜓,

1

𝑏
𝜇 −

𝑎

𝑏𝑐
𝜓)  

The original system in the new coordinates and e with the linearizing control law 

𝑢(𝑡) =
1

𝑏
{(−

𝑎

𝑏
+ 2𝜉) 𝜇 +

1

𝑐
(

𝑎2

𝑏
+ 𝑎𝑏 − 2𝜉𝑎)𝜓 +

𝛾𝑏

𝑐3 𝜓3 + 𝜈}       (16) 

is given by: 
�̇� = 𝜈              

�̇� =
𝑏

𝑐
𝜇 −

𝑎

𝑏
𝜓

𝑦 = 𝜇               

            (17) 

In order to find the zero dynamics, one imposes 𝜇 = 0, which shows that the closed loop system is stable if a and 

𝑏 have the same sign. 
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CONCLUSION 
In this paper, we present robustness analysis of Control Systems by means of the Polynomial Chaos Method 

(PCM). We also present two examples of applications: 1) robustness analysis of a multivariable linear time 

invariant system under a robust controller and 2) the robustness analysis of a nonlinear system with a feedback 

linearization controller. 

The integration of such system produces some special realizations of the solution stochastic process. All the other 

realizations can be calculated from those. Some observations follows:  

 

1. The resulting set of deterministic differential equations can be solved by traditional numerical methods;  

2. The method can only be applied in polynomial systems, that is, the state variable appears in polynomial 

form in the stochastic differential equations, as well as the random parameters. Eventual transcendental 

functions must be approximated by finite sum of polynomials, as for example Taylor polynomials; 

3. The number of terms in the expanded (deterministic) equations can grow very fast with the number of 

polynomials in the truncated expansion; 

4. In contrast with the Monte Carlo method, pseudorandom numbers are only needed after the differential 

system solution, and in case we want to estimate PDF (probability density functions). 

 

Applications to closed-loop control systems are also possible. In this case, the input to the systems must also be a 

stochastic process, which will depend on the random parameters as well. It could be used for example to robustness 

analysis. [12]. 
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